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a b s t r a c t

This paper gives insight into the transition between the different folding-types seen in nature. Using
constraint satisfaction and optimization to study least energy solutions of an elastic, frictional model for
concentric parallel folding, kink band waveshapes resulting from the same model are discovered.
Simplifying the concentric parallel folding model down to a two layer formulation, and assuming the
geometry of the whole layered material is governed by this, the behaviour of the central interface is
represented using a number of points whose displacement is constrained. With a linear foundation, the
full large-deflection energy formulation reaches a point where the whole system is locked up after only
two folds, matching experimental evidence. This is overcome by adding a nonlinearity to the foundation,
where the sequential destabilization and restabilization of experimental load-deflection plots is observed
and the wave-profiles agree with the naturally occurring geological phenomenon. Increasing the
nonlinearity in the foundation and the magnitude of the overburden pressure, the phenomenology of the
concentric folding model can be altered to one that is more kink band-like in structure. Thus a “trigger” is
found, relating two prevalent folding patterns which are generally considered to be at opposite ends of
the spectrum of geometries.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

This paper builds upon previous work (Hunt et al., 2006), which
presented a rigorous analysis of serial concentric parallel folding.
Fig. 1 shows a series of folds, where each fold has been instigated in
sequence. Such behaviour is called serial (Blay et al., 1977),
sequential (Peletier, 2001) or cellular (Hunt et al., 2000a; Hunt,
2006) buckling. Whilst many types of folds are observed in the
field, the exact ordering or formation of the buckles is often not
apparent. The process of serial folding has long been recognized by
geologists as the most common phenomenon in the folding of
rocks, with field observations (Price, 1970, 1975) and analogue
experiments (Cobbold, 1975; Blay et al., 1977) supporting this.
However, this type of behaviour is markedly different to the
synchronous wave-trainsdwhere all of the folds occur uniformly
throughout the materialdthat are predicted by Biot’s viscous
models (Biot, 1961, 1963, 1964). In particular the wavelength
resulting from sequential buckling does not correspond to the
dominant wavelength, the one that amplifies most rapidly in the
spontaneous formulation (Budd et al., 2001).

With folding occurring at many different levels of the Earth’s
crust, the rheology of the rocks during the folding process is often
.
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unknown. However, fold amplification is achieved by non-elastic
(e.g. viscous or plastic) behaviour. In order to explore these
processes, researchers have investigated a variety of theoretical
approaches to aid the understanding of the phenomenology and
the governingmechanisms. In particular, sophisticated analytic and
numerical models have evolved as a result of the studies of both
single and multilayer buckling of various rheological combinations
by Biot and Ramberg (Biot, 1965; Ramberg, 1961; Ramberg and
Strömgård, 1971).

Whilst Biot and Ramberg both recognized that elastic effects are
important in the early stages of the folding process, they put the
viscous effects as the dominant deformation type controlling the
folding process. Opposing this idea, Johnson explored elastic-
plastic deformation further, proving that behaviour similar to that
observed in the Biot and Ramberg models could also develop in
these models, although again only for synchronous folding
(Johnson, 1977). This paper is complementary to these works, as it
studies non-synchronous folds and shows that elastic buckling is of
geological importance. Parallel folds in particular are usually found
in the younger, upper parts of an orogenic belt which supports the
use of elastic theory (de Sitter, 1964).

When an elastic multilayer comprising stiff material, embedded
in a soft matrix, is loaded axially, the layers slip at the interfaces
(Donath and Parker, 1964) and deform into the softer surrounding
medium. The multilayer bends about the centres of curvature such
that a regular periodic concentric buckle pattern is created (Fig. 1).
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Fig. 1. Concentric parallel folding in layers of paper, showing the serial buckling behaviour.

Fig. 2. Kink bands in paper.
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Correspondingly, when the multilayer and foundation are of
a similar competency and subjected to loading along the length, the
layers are unable to move into the matrix and sections of the layers
rotate across the width of the multilayer, forming straight limbs
and sharp corners. This leads to kink banding or box folding (Price
and Cosgrove, 1990) (Fig. 2).

As both concentric folding and kink banding phenomena only
occur under high overburden pressure (Hobbs et al., 1976), the
importance of the layering becomes paramount as the interfaces
provide thenatural slipplanesnecessary for the systemto adopt these
modes (Hobbs et al., 1976; Price and Cosgrove, 1990). Central to
understanding this behaviour is the need to consider the frictional
properties along the interfacial planes. These considerations have led
to a series of papers that investigated multilayer slippage under large
overburdenpressuresusingelastic, frictionalmodels. The formationof
individual kink bands was initially considered byWadee et al. (2004)
andthepropagationof thissystemtoaseriesofbandswasexploredby
Wadee and Edmunds (2005). The model was also extended to inves-
tigate fibrous materials (Edmunds andWadee, 2005).

Limiting themselves to two layers and the formation of the
initial buckle, Budd et al. (2003), assuming that the folding seen in
nature corresponds to a minimal energy solution which penalizes
voids, formulated a potential energy model for concentric parallel
folding where deformation is by flexural buckling. This formulation
includes an energy contribution due to the slip at the layer inter-
face. By extending the model to a multilayer of n layers, Edmunds
et al. (2006) were able to successfully compare the solutions of
the formulation to the first instability of a set of experiments using
layers of paper in foam. Using the small-deflection two layer
formulation, a primitive form of serial bucklingdfollowing the
transition from a single fold to a second fold (it was computation-
ally too intensive to go beyond two folds)dwas shown by Hunt
et al. (2006), who restricted the waveshapes to cubic B-splines
and added a restabilizing nonlinear component to the foundation.
Of course, this imposed the waveshape upon the solution, rather
than allowing a natural one to emerge from the formulation.

The shortcomings of using B-splines in this way are covered in
a recent paper (Edmunds et al., submitted for publication), which
uses constraint-based techniques to successfully follow the
loadedeflection paths and fold evolution of the small-deflection
energy formulation over a number of humps. However, an addi-
tional consideration of the B-spline analysis is that it is difficult to
apply the methodology to the full, large-deflection problem. The
purpose of this paper is therefore to deal with explicitly the large-
deflection formulation and the limitations of the B-spline approach.

Constraint-based modelling is concerned with what is to be
achieved rather than how it is to be achieved. It is particularly useful
in the early stages of problem solving where precise information is
not available. Often in these stages exact knowledge of the solution
is not possible, but rather a sense of the limitations placed upon the
system is more apparent. The intersection of the limitations is then
the feasible solution space. It is possible to explore the solution
alternatives by creating a set of criteria that must be satisfied by the
systemdi.e. the constraintsdfinding a configuration that gives the
smallest perturbation from these goals. To resolve the constraint set
and thus find these configurations, a constraint-based modelling



Fig. 3. LoadeEnd-shortening plot from buckling experiments on multilayers of paper.
(After Edmunds et al., 2006).
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environment (Mullineux, 2001) has been created which uses
a number of optimization codes.

This methodology has been used effectively for many of the
general engineering design applications that are found in practice,
including products, machines and technical systems (Hicks et al.,
2006; Mullineux et al., 2005). The constraint-based modeller in
particular has been used to explore several engineering domains:

� Design synthesis and analysis of mechanisms (Mullineux et al.,
submitted for publication);

� Design analysis and optimization of machines (Hicks et al.,
2001);

� Investigation of machine-material and machineeproduct
interaction (Mullineux et al., in press);

� Evaluation of processing equipment to handle product varia-
tion (Matthews et al., 2006);

� Modelling and understanding of humanmotion (Mitchell et al.,
2007).

The potential of a constraint-based formulation for modelling
geological systems was identified by Edmunds et al., (submitted for
publication) where it was applied to the developed concentric
parallel folding formulation. It was shown that a constraint-based
model gives good qualitative results, thus highlighting the ability of
the formulation to model real geological folding.

In this paper, the constraint-based representation of the small-
deflection energy model given by Edmunds et al. (submitted for
publication) is extended to the full, large-deflection energy func-
tional developed by Budd et al. (2003). To this end, the evolution of
the central interface between two initially flat layers is explored by
increasing the end-shortening and attempting to satisfy the
constraints. This large-deflection problem could not be studied
using B-splines. Additionally, it has long been of interest to inves-
tigate the parameter space such that other fold-profiles might be
determined, this is easily done using constraints.

A summary of the two-layer potential energy formulation for
concentric parallel folding presented in by Budd et al. (2003) is
given in Section 2 as well as results from two subsequent follow-up
articles (Edmunds et al., 2006; Hunt et al., 2006). In Section 3, the
constraint-based methodology is briefly explained and the
constraint-based modelling environment is introduced, along with
a short discussion as to how this is applied to the problem pre-
sented here. For the large-deflection formulation, with both a linear
and nonlinear foundation, output solution profiles and
loadedeflection plots are shown in Section 4. When the results are
compared to experimental data obtained by Edmunds et al. (2006)
and Boon et al. (in press), there is close phenomenological corre-
spondence. Thus the simulations provide several interesting
insights as to the processes that control the formation of a number
of concentric folds. By altering certain parameters, the same
formulation is extended to admit kink bands as a solution profile in
Section 5dgiving some elucidation into the natural phenome-
nology governing the transition between several prominent folding
types. Finally conclusions are drawn.

2. Concentric parallel foldingdnonlinear elastic, frictional
model

Fig. 3 shows the loadedeflection plot from a concentric parallel
folding experiment using a multilayer of paper surrounded by
a foammatrix and the destabilizingerestabilizating behaviour seen
in this plot corresponds closely to the propagation of folds along the
length of the sample seen in Fig. 1.

A brief explanation of the loading behaviour seen in Fig. 3
follows. Firstly the overburden pressure is applied transversely
across the sandwich of layers and foam and is held at this level.
After this an axial displacement is applied at a slow, constant speed
and initially little happens as the system takes up the load (0e6
mm). As the layers are approximately flat, the in-line stiffness is
large and the axial load begins to increase linearly (6e7 mm) until
an instability occurs as the first fold forms and the systems softens.
As the amplitude of the fold increases the load drops smoothly,
before increasing slightly as some lock-up criterion is reached
(7e9.5 mm). The second fold forms in a similar fashion, although
the load drops to a much smaller extent (9.5e14 mm). The serial
evolution of the folds thus continues in this mannerdstiffening
followed by instability in sequence (14e34 mm). In addition there
is an overall restabilization of the axial load, which seems linked to
the overburden. Once the initial instability has occurred, due to the
application of the axial displacement, the overburdenpressure rises
as the sample opens up and some of the axial load is directed into
the foundation. As is shown in Section 2.1 this change in the fric-
tional properties results in a growth in axial load.

The purpose of this paper is to follow phenomenologically the
cellular loading behaviour of the experiments such as that of Fig. 3,
matching the destabilizingerestabilizing loadedeflection path after
the initial instability and by studying the output wave-profiles the
propagation of the folds along the multilayer (Fig. 1). From energy
considerations, Budd et al. (2003) simplified the system to just two
layers and started to model this process for the initial instability;
a primitive form of the evolution from a single fold to two folds
(Fig. 4) was achieved by Hunt et al. (2006) by inserting two inter-
acting cubic B-splines into the formulation, with a nonlinearity in
the foundation, quantitatively following the early stages of Fig. 1. It
is this same energy formulation that is extended in the formation of
a constraint-based model.
2.1. Pseudo potential energy

In the first instance Budd et al. (2003) found a potential energy
formulation for a simple two-layer model. This model was even-
tually extended to a multilayer of n layers by Edmunds et al. (2006).

Following Budd et al. two axially and transversely incompress-
ible layers of thickness t are considered, formed frommaterial with
bending stiffness EI and embedded in a softer foundation material
with transverse linear stiffness k per unit length.When compressed
longitudinally by a load P, to fit without voids the layers must bend
about the same centre of curvature. With the centrelines of the
layers unchanged in length, differential stretching then generates
slip at the interface between the layers (Fig. 5). The total potential
energy, V, therefore includes a quasi-energy contribution due to the
work done against friction during slip (Um). This is added to the



Fig. 4. Using B-splines to follow wave-profile evolution. (After Hunt et al., 2006).
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other energy contributions: the bending energy (UB) minus the
work ðPEÞ done by the load (Thompson and Hunt, 1973)dE here is
the end-shorteningdplus the contribution from the foundation
ðUFk Þ (Hunt et al., 1993). The total potential energy function, V, valid
over large deflections w¼w(x) is hence given by (Budd et al., 2003):

V ¼ UB�PEþUFk þcUm

¼ EI
ZL
0
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Dots denote differentiation with respect to the arclength x, and L is
the length of the layers over which deformation takes place. m and q
are the coefficient of friction and overburden pressure respectively.
The friction indicator c ¼ �1 indicates whether the friction term is
positive or negativeddepending on whether the friction acts to
resist the release of strain energy or in the opposite sense.

If w is small then (1) reduces to
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The equilibrium solutions of the system on the verge of slipping are
then stationary points of the energy functional VðE; LÞ as P varies
and to see the form of these solutions Budd et al. (2003) limited the
profile of the fold using a Galerkin approximation to give a sinu-
soidal waveshape. Putting this into (2), the resulting bifurcation
diagram (Fig. 6(a)), which plots the stationary points, opens the
bifurcation point at the classical Euler critical load, P¼ PC when E ¼
0 (Thompson and Hunt,1973). Thus the coefficient of friction, m, and
the friction indicator, c, act as an imperfection. (Note that the paths
at c ¼ þ1 are unstable under dead loading, but are stable when the
end-shortening is controlled as in the experiments).

Using a single cubic B-spline, in place of the Galerkin approxi-
mation, Hunt et al. (2006) find a similar behaviour to that exhibited
in Fig. 6(a). However, they also try to model the foundation in
a more realistic manner by adding a nonlinear term to the foun-
dation energy of the form:
Fig. 5. Slip between incompressible layers constrained to remain in contact.
UFC ¼ 1
4
C

L
w4dx; (3)
Z
0

where C is a transverse stiffening nonlinearity. This is equivalent to
the matrix exhibiting nonlinear elastic behaviour, where UFk and
UFC represent a loss of stiffness, as the foundation buckles elasti-
cally, and a re-stiffening, as voids within the foundation are
compressed (Hunt andWadee, 1998). Thus, adding the nonlinearity
(3) to (2), the system can restabilize and eventually lock-up at some
larger value of E (Fig. 6(b)).

Looking at Fig. 6(a) in more detail, at constant load P, points in
the region between the E ¼ 0 axis and the curve defined by c¼�1
(or c ¼ þ1) are stationary positions where the system is “jammed”
between two critical slip conditions which correspond to a half-
wave with positive or negative amplitude and the friction opposing
this motion. Within the jammed region the system sits in equilib-
rium; however, when placed outside of this, with constant load, it
would return to the boundary. Thus at zero load, with sufficient
end-shortening, the system stays at the c¼�1 line. With increased
load the system follows the dashed line on Fig. 6(a) through the
jammed region, until at c ¼ þ1 it deflects with E increasing.

With a purely linear foundation, the critical load, P ¼ PC, can be
calculated. Using the Galerkin approximationda similar equation is
found when a cubic B-spline is imposed as the waveshapedin (2)
yields

PC ¼ 2EIp2

L2
þ kL2

p2 : (4)

This is obtained by minimizing PC over all values of L and PC and
occurs when

L ¼ p

ffiffiffiffiffiffiffi
2EI
k

4

r
: (5)

However, the length, L, is that associated with a wave-train; for
serial buckling folds are likely to have arclengths different to that
predicted by (5) (Budd et al., 2001).
Fig. 6. Bifurcation diagram indicating jammed region for constant m, for (a) A linear
foundation, (b) A nonlinear foundation.
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3. Constraint modelling

Whilst giving some initial insight into serial buckling, the cubic
B-spline approximation (Hunt et al., 2006) using the small-deflec-
tion energy formulation is very computationally intensive for even
the primitive two-fold case. It was not feasible to extend the model
beyond two folds to a full sequence of folds. It was also not possible
to study the large-deflection model.

Using the constraint-based methodology to formulate the
problem, Edmunds et al. (submitted for publication) have shown
that it is possible to explore the multi-fold solutions arising from
the small-deflection formulation and achieve behaviour that can be
effectively compared to the propagation observed during experi-
ments. Here the latter problem is addressed: creating a constraint-
based model of the full energy functional and studying the solu-
tions arising from resolving the constraints.

A summary of the constraint-based methodology and its
application to the elastic, frictional concentric parallel folding
model follows.

3.1. Constraint-based techniques

Constraints on a process or system might be: geometric limi-
tations, performance and physical requirements, limits on
resources or more complex engineering considerations. Constraint-
based reasoning uses these limitations as the core of the modelling
process, representing them as a set of constraint rules, objectives
that are required to be satisfied and are written algebraically as
equality and inequality relations in a number of variables. To satisfy
the constraints and hence find a valid solution, a configuration of
the variables can be discovered where the falseness of the rules is
minimized. Usually the constraints are not independent and so
must be solved simultaneously; the solution space is the intersec-
tion of the spaces for each constraint.
Fig. 7. The constraint-based
There are several advantages in using a constraint-based
methodology to model systems. However, resolving the imposed
constraints can still be a problem and a variety of numerical and
symbolic ways for resolving constraints currently exist (Mullineux,
2001). The constraint-based modelling environment (Mullineux,
2001) used in this work has a class of functions to define and
resolve constraint rules. Fig. 7

Each constraint is put into a rule() command. A single objective
function F is formed by evaluating the expressionwithin each rule()
statement and taking the sum of the squares of these. If F ¼ 0, then
each constraint is “true” and a feasible solution exists, otherwise its
value is a measure of falseness. In this case the resolution process
commences, varying a set of parameters specified by the user, in
order to minimize F. If a (local) non-zero minimum is found, this
suggests some constraints are in conflict, and the solution is a “best
compromise”.

Constraint resolution is performed using in-built optimization
routines. Optimization techniques provide a viable means for
resolving constraints as the number of variables and constraints are
not limited and the constraints are not required to be in any
particular form. For the problem described in this paper, it has been
found that the NAG optimization routine, e04wdc: nag_opt_nl-
p_solve, (NAG, 2005) is the most appropriate for exploring the
solution space.

Designed to solve nonlinear programming problemsethe
minimization of a smooth nonlinear function subject to a set of
constraints on the variablesde04wdc is a gradient-based optimi-
zation method (Snyman, 2005), i.e. it uses information about
a function’s derivative to find a local minimum. It is in the same
class of optimization routines as the steepest (or gradient) descent
method and Newton’s method (Nocedal and Wright, 2006) and, like
Newton’s method, e04wdc uses the second derivative to take
a direct route. The objective and constraint functions are assumed
to be smooth, i.e. at least twice-continuously differentiable.
modeller user interface.
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3.2. A constraint-based formulation

To look at a series of solutions, certain values have to be selected
a priori. To set-up a constraint-based model, following Section 2.1,
take two layers of length Length, stiffness EI and frictional coeffi-
cient mqt, in a matrix of stiffness k. As in Edmunds et al., (submitted
for publication), Length ¼ 100 mm and a ratio of mqt:EI:k ¼ 5:200:1
is taken. Hence, values for the half-wavelength L z 14.05 mm and
the critical load PC ¼ 40 N are predicted, coming from (5) and (4)
respectively. The latter gives a potential lower bound on the load
level. Here c ¼ þ1, as the friction is opposing the end-shortening.

Similarly to Edmunds et al., (submitted for publication), the
central interface is represented graphically by a number of discrete
points, Num_Pts ¼ 50, in two-dimensional space, evenly spaced
along the length. With the two end-points fixed in both the hori-
zontal, x0 (as x is the arclength, x0 is used for the horizontal axis),
and vertical, w, directions, the others are allowed to vary in these
directions, thus giving 96 degrees-of-freedom. The energy equation
(1) is calculated in the function, Energy(), by using an in-built
numerical differentiation command and the trapezium rule.

To look for the wave-profile with minimal energy as the end-
shortening is increased, the right-hand end of the interface is
considered as the “loaded” end of the two layer sample. Positioning
the right-hand end at an end-shortening, D, and calculating V, via
Energy(), the points representing the interface are adjusted using
the NAG Library optimization algorithm (NAG, 2005) described in
Section 3.1, and an attempt is made to satisfy the following
constraint rules:

(a) Points have not passed through each other in x0-direction;
(b) The original arc length is maintained by the profile;
(c) The imposed end-shortening (D) is equal to the value (E)

calculated by Energy;
(d) The energy is minimized.

Additionally there isonlyone load,P, foragivenend-shortening,D.
This should be found simultaneously with the waveshape. However,
Edmunds et al., (submitted for publication) showed that the solutions
are highly sensitive and, particularly for small values of D, the V ¼
0solutioncorresponding to theflat-state tends todominate (in reality
this solution cannot exist as it is within the “jammed” region pre-
sented in Section 2.1). Therefore, Edmunds et al. add a second stage to
the solutionprocesswhich tests the load level and it is shownthat the
local energy minima are better found during this second stage.

From (1), V is linear in the load and thus changing P has little
effect on the waveshape if the constraints (a)e(d) are satisfied.
However, if the load is too high then it is to be expected that the
local minimum energy corresponds to a solution with a larger end-
shortening. Similarly, if P is not large enough, then the local energy
minimum is achieved with a smaller end-shortening. Hence the
minima are unstable, matching the saddle points found in the
energy contour plots presented by Hunt et al. (2006), as lower
energies are found for the flat state and periodic solution.

Thus to find the solutions of interest, once an output profile has
been found, the second stage of the solution process is to release
the “loaded”, right-hand end of the interface in the x0-direction
(giving 97 degrees-of-freedom), and test whether the end-short-
ening changes (and DzE), whilst satisfying (a), (b) and (d). P is
therefore adjusted until the solution is stationary.

This two stage solution method can be automated by including
a second optimization loop, which varies P such that the correct
end-shortening is maintained. Conversely, owing to small iteration
steps in the optimization algorithm, a disadvantage of adding the
second loop is that the time for a simulation to be completed can be
extended approximately tenfold.
4. The full energy formulation

To compare and contrast with the small-deflection solutions
illustrated by Edmunds et al., (submitted for publication), attention
here is turned to the large-deflection energy formulation, (1). As in
that paper, the load paths and the change in the interface profile are
followed as the end-shortening increases. Using a constraint-based
formulationandsolver, the restrictions that facedHuntet al. (2006) in
extending the cubicB-splinemodel to the full functional are removed.

Edmundset al., (submitted forpublication) showedthatbyfinding
the stationary values of the small-deflection energy functional with
increasing end-shortening, propagation can be followedwithout any
lock-up criterion in the system; however, one must be included to
obtain the correct loading. This is done via the incorporation of
a stiffeningnonlinearity in the foundation through the inclusionof (3)
which gives the possibility of restabilization of the axial load. It has
been argued by Boon et al. (2007) and Boon (2007) that lock-up is
caused by the “cusping” at the centre of the folds; however, it is most
likely a combination of foundation and cusping effects, as new folds
often start to grow before the current one has reached a point where
the singularity alone would have a significant affect.

Starting with C ¼ 0 in (3), and thus dealing with a purely linear
foundation, solutions are found using the methodology described
in Section 3.2, by finding an automatic load level after discovering
an approximate value of P manually. As is seen in the subsequent
sections, a stiffening nonlinearity needs to be added to the foun-
dation to achieve the desired behaviour from the model and
therefore, after Edmunds et al., (submitted for publication), the
nonlinear component is set to C¼ 0.25. Owing to the computational
time and effort, the automatic optimization loop is not imple-
mented in this second run, as the precision is deemed satisfactory
from the initial manual search.

4.1. Results

4.1.1. Linear foundation
To mimic Edmunds et al., (submitted for publication), the end-

shortening was increased from D ¼ 0.5 to D ¼ 8.0 and the solutions
found by resolving the constraint-based system using the NAG
optimization routine e04wdc (NAG, 2005). Here a larger number of
small increments were included in the early stages than previously
to improve accuracy. The results of themodelling are shown in Fig. 8.

The first observation that can be made from the PeD plot given
in Fig. 8(a) is that the load path actually stops at D z 5. No
reasonable solution can be found after this value and the system
appears to lock-up completely.

Studying the wave-profiles in Fig. 8(b), the loaded end has
deformed and even for the final valid solution only the first hump
has grown to any significant degree. With a softening linear foun-
dation, the large-deflection formulation easily admits minimum
energy solutions with tight, large amplitude, half-waves. The
system is softening to a larger degree to create such amplitudes,
hence the loadedeflection plot for the large-deflection formulation
is below that of the small-deflection. In the case presented here, the
initial hump has grown to the point that the limbs are almost
vertical and with these large deformations problems can appear in
the model due to, from (1), the curvature becoming singular in the
denominator of bending energy, UB, and the end-shortening,
E, having complex values.

Whilst this might be considered a fault in the set-up of the
constraint-based formulation, Boon (2007), when testing multi-
layers of differing thicknesses consisting of paper embedded in
a foam foundation, remarked upon a similar phenomenon. With
a thick surrounding matrix, one that Boon considers to be
approximately linear, when (in particular) thick and (occasionally)
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Fig. 8. (a) LoadeEnd-shortening plot and (b) Evolution of the wave-profile as the end-shortening is increased.
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thin multilayers buckle at just the loaded end, both are prone to
stopping at just two humps, even with “significant” amounts of
end-shortening (Boon, 2007) (Fig. 9).

When a nonlinear stiffening element is added to the foundation,
such that the load restabilizes, it is to be expected that large ampli-
tudes would be prohibited. Therefore, this regime is now studied.

4.1.2. Nonlinear foundation
As in Edmunds et al., (submitted for publication), the point

energy resulting from incorporating a stiffening nonlinearity into
the foundation, is calculated in the Energy() function and inte-
grated along the length via the trapezium rule. Thus an approxi-
mate value is found for (3), the total energy added to the system in
doing this. With C set to 0.25, analysing the full formulation with
this addition for D¼ 0.5e8.0, Fig. 10 gives the resulting PeD plot. As
with the small-deflection results (Edmunds et al., (submitted for
publication)), there is a definite destabilizing then restabilizing of
the load path, although the increments in the end-shortening are
not small enough to make it completely clear that each decrease in
stiffness coincides with a new hump forming.

Of more interest are the wave-profiles presented in Fig. 11. Two
things are immediately apparent from looking at these profiles:
firstly the amplitudes of the wave are smaller than in Fig. 8(b), the
system no longer “locks up” and more end-shortening can be
applied to the layers to give multiple humps; secondly, in the initial
stages, both ends of the sampledthe loaded and the reac-
tiveddeform at about the same time. However, the waveshape is
slightly different for each end and here the loaded end continues to
Fig. 9. A “thick” multilayer that has completely locked up at two humps. (After Boon,
2007).
evolve for much of the loading, only in the latter stages does the
reactive end start to change to any extent.

Again, even though this might be considered an artefact of the
modelling process, such behaviour has been in seen in experiments
(Boon, 2007; Boon et al. (in press)). Fig. 12(a) and (b) were taken
from an experiment conducted during the set that appeared in
Edmunds et al. (2006). Here the foundation had a high transverse
load such that the nonlinear stiffening was more noteworthy, and
showed exactly the same features as those resulting from the
model (Fig. 11). Note the tight concentric waves at the loaded end
and the more open sinusoidal waves at the reactive end. The
difference in shape of the waves at each end, which one propagates
as the dominant buckle pattern and how this influences the load
path, is discussed in greater detail by Boon et al. (in press). In
contrast, the focus is now turned to a very interesting possible
extension of the concentric parallel folding formulation.
5. Changing the behaviour to kink banding

Finally a study on the related geological buckling phenomenon
of kink banding, also known as box folding, is now presented. These
preliminary findings, using constraint-based modelling, show the
possible admittance of box folds as a solution appearing directly
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Fig. 10. PeD plot with a nonlinear foundation.
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from the concentric parallel folding formulation. Such results need
to be studied in more depth in the future and further research will
be conducted to clarify the emergence of the waveshapes.

5.1. Kink band energy formulation

Like concentric folding, kink banding is often found in the
deformation of geological strata (Price and Cosgrove, 1990) and is
a potential failure mode for a layered material held together by an
external pressure, subjected to layer-parallel compression. Again
occurring under huge overburden pressures, the difference
between concentric folding and kink banding regimes is that the
foundation is much stiffer in the latter than the former. By
considering the large transverse pressure and interlayer slippage,
Fig. 12. (a) Left-hand (reactive) end and (b)
as with concentric parallel folding, a model has been formulated in
terms of elastic bending and friction (Hunt et al., 2000b) and
extended in several articles (Hunt et al., 2001; Wadee et al., 2004).
A brief outline of the formulation is now given.

As before, voids incur large energy penalties and therefore the
resulting wave-profile negates these in nature. As shown experi-
mentally in Fig. 2, using layers of paper, and schematically in Fig. 13,
the layers are unable to deform into the surrounding matrix and to
penalize voids, kink bands are characterized by having straight
limbs and sharp corners (Hunt et al., 2000b). Hence within the
multilayer, each layer takes the same waveshape as its neighbours.

To this end, the model is set up by assuming that there is a stack
of n layers of thickness t, width a1 and length a2 which is loaded
axially and confined transversely by distributed forces of total
Right-hand (loaded) end of the sample.



Fig. 13. (a) Stack of blocks at orientation angle b with layer-parallel stiffness k. (b) Representative two-layer section, showing single layer contributions to the bending stiffness c
(lower layer) and the “foundation” stiffness kf (upper layer). (After Wadee and Edmunds, 2005).
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magnitude nP and Q respectively. Hence, the overburden pressure
is defined as q¼ Q/a2 and the distributed layer-parallel load on each
layer is given by p ¼ P/t. As with the concentric parallel folding
model, the friction force between the layers is modelled by
a Coulomb friction law with a coefficient m.

Additionally from Fig. 13, the following variables are included:

� The kink band orientation angle b;
� The angle of rotation a;
� The layer bending stiffness, modelled as rotational spring of
stiffness c;

� The stiffness of the surrounding layers (analogous to founda-
tion stiffness) kf ;

� The kink band width b.

To calculate the total potential energy it is necessary to consider:

(i) The sum of strain energy from compressing layer-parallel
springs of stiffness k;

(ii) Rotating the springs of stiffness c to simulate bending energy
(note that this c is not the same as the nonlinear foundation
stiffness C in the concentric parallel folding model);

(iii) Evaluating the energy required to overcome the frictional
force as the layers slide over each other;
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Fig. 14. Changing from a concentric fold to a box fold? Central interface wave-profiles w
deformation has started at the reactive end, in accord with Boon et al. (in press) who agree
(iv) Compressing the foundation springs of stiffness kf ;
(v) The work done by the external loads axially and transversely.

For kink band i, the potential energy, Vi, nondimensionalized
with respect to kit

2, is given by:
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where each expression in (6) follows respectively (i)e(v). Full
details of the formulation and derivation of each element in the
total potential energy can be found in Wadee et al. (2004).
Stationary solutions of (6) with respect to ai, bi and end-shortening
di lead to loadedeflection paths and values for ai and bi, that can be
compared with experimental results.

By comparing the model and experiments using layers of paper,
the outer layers surrounded by a steel rig used as a foundation,
there is very good correlation for not only the initial instability,
rotation and orientation angles (a and b respectively in Fig. 13)
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Fig. 15. (a) “Box fold”-like wave profile of the central interface when D ¼ 5, mqt ¼ 200, (b) Schematic showing the central interface extended.
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(Wadee et al., 2004), but also for subsequent ones after propagation
(Wadee and Edmunds, 2005).

It should be stated that the formulation that leads to (6) assumes
a priori the waveshape, leading to the parametersdangles b and a,
plus band width bdthat allow the shape evolution to be tracked
throughout each instability. The results that follow do not super-
sede the kink band model described above, there is no way thus far
to predict the instabilities nor the angles in the current formulation
for example; however, in imposing the constraints, a wave with
a kink band-like fold profile can result directly from the concentric
parallel folding model. Thus the idea that the phenomena of kink
bands and concentric folds are related is reinforced, a “phenome-
nological trigger” being shown to change between them.

5.2. Constraint-based formulation

The wish here is to explore the differences between the two
scenarios of concentric folding and kink banding, thus giving some
insight into the relationship between the two fold-types. No
attempt is made to directly create a constraint-based model for (6),
rather, by altering the relevant variables in the constraint-based
concentric parallel folding formulation, it is shown that it is
possible to get both profiles.

From kink banding experiments (Wadee et al., 2004;Wadee and
Edmunds, 2005), two points become apparent when compared to
concentric folding. For kink banding: first the foundation stiffness is
much higher in relation to the layer stiffness and second the
overburden pressure is significantly larger. In fact, for the former,
from Wadee and Edmunds (2005), the ratio of foundation stiffness
and layer stiffness is tending towards unity EI:k z 6:1. From the
same article, the overburden required for the initiation of kink
bands is at least 10 times higher than that used in the equivalent
concentric folding experiments shown by Edmunds et al. (2006).

However, with the external layers comprising the multilayer
giving the basal slip zones, thismight be thought of as an “effective”
stiffness for the foundation coming from the high overburden.
What is clearer is that the softening (linear) part of the foundation
is quickly dominated by the stiffening nonlinear part as the
multilayer tries to move into an unyielding medium.

Therefore, as an initial investigation, the constraint-based
model for concentric parallel folding under small deflections as
described by Edmunds et al., (submitted for publication) is used,
with the ratio of the stiffnesses for the layers and linearity in the
foundation as given in Section 3.2, EI:k ¼ 200. As mentioned above,
it is assumed that the overburden changes the behaviour rather
than altering the ratio EI:k. As the nonlinear component of the
foundation stiffness is more dominant than in concentric folding
this is reflected in the energy formulation and thence, with no
measured value available, a ratio of k:C ¼ 1 is chosen initially. This
larger value of C is reasonable as it has the effect of giving a low
amplitude wave with longer wavelengthsdthe humps are unable
to close significantly and it is much easier to form the next in the
sequence than move further into the matrixdsomething that is
noticeable in kink banding at the central interface.

The effect of increasing the overburden on the waveshape is less
obvious, but it is expected to force the rounded concentric waves to
“square off” and flatten. To test this hypothesis, values for the end-
shortening D and load P are fixed (as no attempt is made at this
point to establish the loading paths, these values are not so
important) and mqt is incrementally increased. To find the least
energy wave profile the constraint rules given in Section 3.2 are
minimized, in particular the condition D ¼ E is imposed.

To see the change in preferred shape more precisely the inter-
facial length was halved (i.e. Length ¼ 50 mm), whilst the number
of points representing this, Num_Pts, was kept at 50 as previously.

5.2.1. Results
To follow the evolution of the preferred waveshape, the end-

shortening was originally set at D ¼ 0.5 and the variable incorpo-
rating the overburden pressure mqt was increased from 5 to 500.
The results from this are shown in Fig. 14(a).

Satisfyingly, there is a definite transition in the preferred wave-
shape from a very curved one, that is “concentric fold”-like in
geometry, to a much more flat one with straight limbs, that shows
a strong resemblance to centre of a box fold.Whilst the higher values
might be considered outside the feasible range seen experimentally,
this change begins to occur at mqt¼ 50, i.e.10 times higher than that
required for concentric folding. Keeping the overburden effect at 50
and putting C at a larger value, little occurs until C z 20 where the
“box”-shape is even more marked (Fig. 14(b)). Beyond C z 50 the
profile begins to take a waveshape that is not found in experiments
and, as a result, is not discussed further here.

(Note: it is very important to state here that apart from the initial
solution, these solutions cannot currently be obtained directly.
Having found the least energywave for mqt¼ 5 and C¼ 1, the others
can be found by changing mqt or C and optimizing from that profile.
Hence each profile in Fig. 14 is found having obtained the previous
one. It is hoped that this can be addressed in the future).

By putting D ¼ 5.0, C ¼ 1 and mqt ¼ 200, the box-fold wave-
shapes at the central interface are even more apparent (Fig. 15(a)).
As illustrated in the schematic of Fig. 15(b), extending the geometry
in both directions a sequence of kink bands is clearly observable.

6. Conclusions

This paper has taken a recently established elastic, frictional
model for two layer concentric parallel folding and compared its
predictions with experiments. More layers will be added in the
future by combining the multilayer formulation presented by
Edmunds et al. (2006) with the geometric restrictions studied by



R. Edmunds et al. / Journal of Structural Geology 32 (2010) 997e1008 1007
Boon et al. (2007). By representing the central interface as a series
of points, a constraint-based formulation is created. Formulating
a set of constraint rules that must be satisfied and, starting from an
initially flat state, the loaded end of the interface is disturbed with
a given end-shortening. Using a NAG Library optimization routine
(NAG, 2005) to ensure that all of the constraints hold true, and then
relaxing several of these, load levels and the corresponding least
energy solutions for the end-shortening can be found with ease.

Incrementally increasing the end-shortening and repeating,
unlike the B-spline model given in Hunt et al. (2006) which is
computationally complicated, the evolution of the central interface
is followed for many humps and the resulting load paths and wave-
profiles successfully match the experimental data of Edmunds et al.
(2006) and Boon et al. (in press).

Unlike the small-deflection model, where the sequential prop-
agation is clearly seen without an included lock-up criterion or
nonlinearity in the foundation, for the full formulation with
a purely linear foundation, no solutions can be found beyond the
second hump. The system reaches a point of lock-up, agreeing with
experimental evidence that seems to suggest that this is a likely
outcome (Boon, 2007; Boon et al. (in press)). However, like the
small-deflection scenario, inclusion of a linear foundation does not
produce the destabilization and restabilization of the load-deflec-
tion paths as observed in experiments.

Adding a small hardening nonlinear stiffness to the foundation,
the PeD plots are more realistic and, as is again indicated from the
profiles resulting from experiments, this overcomes the lock-up.
Thus the simulations match the process of forming concentric
parallel folds closely, even potentially showing the buckling that
can form at both ends of the sample in this regime. More experi-
ments are needed, but details about this behaviour will be given in
a forthcoming paper (Boon et al. in press).

Finally, a scoping investigation has been presented, showing
that it is possible to produce kink band-like structures from the
concentric folding formulation. Using the small-deflection model,
increasing the nonlinearity in the foundation and the magnitude
of the overburden, the central interface begins to take on a box
fold wave-profile and thus encompasses the transition between
several different folding-types seen in nature. This study is in the
very early stages, certainly the overburden values that make the
shape very prominent are beyond what is achieved experimen-
tally and whilst altering the nonlinear part of the foundation
seems to add to this effect, the correct magnitude is speculative.
Additionally the box folds cannot currently be found as an
immediate solution, it is necessary to evolve towards them from
another solution.

Therefore there is a definite need to investigate kink banding
further, starting with an attempt to get a measure of the magnitude
of the nonlinear variable C from experiments. Using the constraint-
based model, is it possible to get the correct output shapes from
a flat state? If it is possible, what affects this? The intention is to
explore these factors in the near future, such that it is then possible
to successfully follow the load-deflection plots in a similar way to
the concentric parallel folding model presented here. As part of
this, it may be required to use the large-deflection energy
functional.
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